Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Commun ; 14(1): 4734, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550290

RESUMO

Extracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins. We identify 24 proteins with conserved EV-sorting abilities across five types of producer cells. TSPAN2 and TSPAN3 emerge as lead candidates and outperform the well-studied CD63 scaffold. Importantly, these engineered EVs show promise as delivery vehicles in cell cultures and mice as demonstrated by efficient transfer of luminal cargo proteins as well as surface display of different functional entities. The discovery of these scaffolds provides a platform for EV-based engineering.


Assuntos
Vesículas Extracelulares , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Sistemas de Liberação de Medicamentos , Transporte Proteico , Comunicação Celular
3.
J Extracell Vesicles ; 11(7): e12248, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879268

RESUMO

Extracellular vesicles (EVs) have shown promise as potential therapeutics for the treatment of various diseases. However, their rapid clearance after administration could be a limitation in certain therapeutic settings. To solve this, an engineering strategy is employed to decorate albumin onto the surface of the EVs through surface display of albumin binding domains (ABDs). ABDs were either included in the extracellular loops of select EV-enriched tetraspanins (CD63, CD9 and CD81) or directly fused to the extracellular terminal of single transmembrane EV-sorting domains, such as Lamp2B. These engineered EVs exert robust binding capacity to human serum albumins (HSA) in vitro and mouse serum albumins (MSA) after injection in mice. By binding to MSA, circulating time of EVs dramatically increases after different routes of injection in different strains of mice. Moreover, these engineered EVs show considerable lymph node (LN) and solid tumour accumulation, which can be utilized when using EVs for immunomodulation, cancer- and/or immunotherapy. The increased circulation time of EVs may also be important when combined with tissue-specific targeting ligands and could provide significant benefit for their therapeutic use in a variety of disease indications.


Assuntos
Vesículas Extracelulares , Neoplasias , Albuminas/análise , Animais , Tempo de Circulação Sanguínea , Modelos Animais de Doenças , Vesículas Extracelulares/química , Humanos , Linfonodos , Camundongos , Neoplasias/metabolismo , Tetraspaninas/análise
4.
Front Physiol ; 12: 689179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721051

RESUMO

Splice-switching antisense oligonucleotide- (SSO-) mediated correction of framedisrupting mutation-containing premessenger RNA (mRNA) transcripts using exon skipping is a highly promising treatment method for muscular diseases such as Duchenne muscular dystrophy (DMD). Phosphorothioate (PS) chemistry, a commonly used oligonucleotide modification, has been shown to increase the stability of and improve the pharmacokinetics of SSOs. However, the effect of PS inclusion in 2'-O-methyl SSOs (2OMe) on cellular uptake and splice switching is less well-understood. At present, we demonstrate that the modification of PS facilitates the uptake of 2OMe in H2k-mdx myoblasts. Furthermore, we found a dependency of SSO nuclear accumulation and high splice-switching activity on PS inclusion in 2OMe (2OMePS), as tested in various reporter cell lines carrying pLuc/705. Increased exon-inclusion activity was observed in muscle, neuronal, liver, and bone cell lineages via both the gymnotic uptake and lipofection of 2OMePS. Using the photoactivatable ribonucleoside-enhanced crosslinking and a subsequent proteomic approach, we identified several 2OMePS-binding proteins, which are likely to play a role in the trafficking of 2OMePS to the nucleus. Ablation of one of them, Ncl by small-interfering RNA (siRNA) enhanced 2OMePS uptake in C2C12 myoblasts and upregulated luciferase RNA splicing in the HeLa Luc/705 reporter cell line. Overall, we demonstrate that PS inclusion increases nuclear delivery and splice switching in muscle, neuronal, liver, and bone cell lineages and that the modulation of 2OMePS-binding partners may improve SSO delivery.

5.
J Extracell Vesicles ; 10(12): e12142, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34595842

RESUMO

Up to now, the field of liquid biopsies has focused on circulating tumour DNA and cells, though extracellular vesicles (EVs) have been of increasing interest in recent years. Thus, reported sources of tumour-derived nucleic acids include leukocytes, platelets and apoptotic bodies (AB), as well as large (LEV) and small (SEV) EVs. Despite these competing claims, there has yet to be a standardized comparison of the tumour-derived DNA associated with different components of blood. To address this issue, we collected twenty-three blood samples from seventeen patients with pancreatic cancers of known mutant KRAS G12 genotype, and divided them into two groups based on the time of patient survival following sampling. After collecting red and white blood cells, we subjected 1 ml aliquots of platelet rich plasma to differential centrifugation in order to separate the platelets, ABs, LEVs, SEVs and soluble proteins (SP) present. We then confirmed the enrichment of specific blood components in each differential centrifugation fraction using electron microscopy, Western blotting, nanoparticle tracking analysis and bead-based multiplex flow cytometry assays. By targeting wild type and tumour-specific mutant KRAS alleles using digital PCR, we found that the levels of mutant KRAS DNA were highest in association with LEVs and SEVs early, and with SEVs and SP late in disease progression. Importantly, we established that SEVs were the most enriched in tumour-derived DNA throughout disease progression, and verified this association using size exclusion chromatography. This work provides important direction for the rapidly expanding field of liquid biopsies by supporting an increased focus on EVs as a source of tumour-derived DNA.


Assuntos
DNA Tumoral Circulante/metabolismo , DNA/metabolismo , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Humanos , Neoplasias Pancreáticas
6.
Nat Biomed Eng ; 5(9): 1084-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34616047

RESUMO

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.


Assuntos
Vesículas Extracelulares , Doenças Neuroinflamatórias , Animais , Citocinas , Inflamação , Camundongos , Fator de Necrose Tumoral alfa
7.
Cells ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207405

RESUMO

The extracellular environment consists of a plethora of molecules, including extracellular miRNA that can be secreted in association with extracellular vesicles (EVs) or soluble protein complexes (non-EVs). Yet, interest in therapeutic short RNA carriers lies mainly in EVs, the vehicles conveying the great majority of the biological activity. Here, by overexpressing miRNA and shRNA sequences in parent cells and using size exclusion liquid chromatography (SEC) to separate the secretome into EV and non-EV fractions, we saw that >98% of overexpressed miRNA was secreted within the non-EV fraction. Furthermore, small RNA sequencing studies of native miRNA transcripts revealed that although the abundance of miRNAs in EVs, non-EVs and parent cells correlated well (R2 = 0.69-0.87), quantitatively an outstanding 96.2-99.9% of total miRNA was secreted in the non-EV fraction. Nevertheless, though EVs contained only a fraction of secreted miRNAs, these molecules were stable at 37 °C in a serum-containing environment, indicating that if sufficient miRNA loading is achieved, EVs can remain delivery-competent for a prolonged period of time. This study suggests that the passive endogenous EV loading strategy might be a relatively wasteful way of loading miRNA to EVs, and active miRNA loading approaches are needed for developing advanced EV miRNA therapies in the future.


Assuntos
Vesículas Extracelulares/genética , Vesículas Extracelulares/fisiologia , RNA Interferente Pequeno/genética , Linhagem Celular , Células HEK293 , Humanos , MicroRNAs/genética , Análise de Sequência de RNA/métodos
8.
Pharmaceutics ; 13(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198625

RESUMO

The toolbox for genetic engineering has quickly evolved from CRISPR/Cas9 to a myriad of different gene editors, each with promising properties and enormous clinical potential. However, a major challenge remains: delivering the CRISPR machinery to the nucleus of recipient cells in a nontoxic and efficient manner. In this article, we repurpose an RNA-delivering cell-penetrating peptide, PepFect14 (PF14), to deliver Cas9 ribonucleoprotein (RNP). The RNP-CPP complex achieved high editing rates, e.g., up to 80% in HEK293T cells, while being active at low nanomolar ranges without any apparent signs of toxicity. The editing efficiency was similar to or better compared to the commercially available reagents RNAiMAX and CRISPRMax. The efficiency was thoroughly evaluated in reporter cells and wild-type cells by restriction enzyme digest and next-generation sequencing. Furthermore, the CPP-Cas9-RNP complexes were demonstrated to withstand storage at different conditions, including freeze-thaw cycles and freeze-drying, without a loss in editing efficiency. This CPP-based delivery strategy complements existing technologies and further opens up new opportunities for Cas9 RNP delivery, which can likely be extended to other gene editors in the future.

9.
Front Physiol ; 12: 698166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095541

RESUMO

In Duchenne muscular dystrophy (DMD), lack of dystrophin increases the permeability of myofiber plasma membranes to ions and larger macromolecules, disrupting calcium signaling and leading to progressive muscle wasting. Although the biological origin and meaning are unclear, alterations of phosphatidylcholine (PC) are reported in affected skeletal muscles of patients with DMD that may include higher levels of fatty acid (FA) 18:1 chains and lower levels of FA 18:2 chains, possibly reflected in relatively high levels of PC 34:1 (with 16:0_18:1 chain sets) and low levels of PC 34:2 (with 16:0_18:2 chain sets). Similar PC alterations have been reported to occur in the mdx mouse model of DMD. However, altered ratios of PC 34:1 to PC 34:2 have been variably reported, and we also observed that PC 34:2 levels were nearly equally elevated as PC 34:1 in the affected mdx muscles. We hypothesized that experimental factors that often varied between studies; including muscle types sampled, mouse ages, and mouse diets; may strongly impact the PC alterations detected in dystrophic muscle of mdx mice, especially the PC 34:1 to PC 34:2 ratios. In order to test our hypothesis, we performed comprehensive lipidomic analyses of PC and phosphatidylethanolamine (PE) in several muscles (extensor digitorum longus, gastrocnemius, and soleus) and determined the mdx-specific alterations. The alterations in PC 34:1 and PC 34:2 were closely monitored from the neonate period to the adult, and also in mice raised on several diets that varied in their fats. PC 34:1 was naturally high in neonate's muscle and decreased until age ∼3-weeks (disease onset age), and thereafter remained low in WT muscles but was higher in regenerated mdx muscles. Among the muscle types, soleus showed a distinctive phospholipid pattern with early and diminished mdx alterations. Diet was a major factor to impact PC 34:1/PC 34:2 ratios because mdx-specific alterations of PC 34:2 but not PC 34:1 were strictly dependent on diet. Our study identifies high PC 34:1 as a consistent biochemical feature of regenerated mdx-muscle and indicates nutritional approaches are also effective to modify the phospholipid compositions.

10.
Biomaterials ; 266: 120435, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049461

RESUMO

The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.


Assuntos
Vesículas Extracelulares , Distrofia Muscular de Duchenne , Animais , Interleucina-6 , Camundongos , Fibras Musculares Esqueléticas , Transdução de Sinais
11.
J Vis Exp ; (159)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32955503

RESUMO

Duchenne muscular dystrophy (DMD) is a degenerative muscle disease that causes progressive loss of muscle mass, leading to premature death. The mutations often cause a distorted reading frame and premature stop codons, resulting in an almost total lack of dystrophin protein. The reading frame can be corrected using antisense oligonucleotides (AONs) that induce exon skipping. The morpholino AON viltolarsen (code name: NS-065/NCNP-01) has been shown to induce exon 53 skipping, restoring the reading frame for patients with exon 52 deletions. We recently administered NS-065/NCNP-01 intravenously to DMD patients in an exploratory investigator-initiated, first-in-human trial of NS-065/NCNP-01. In this methods article, we present the molecular characterization of dystrophin expression using Sanger sequencing, RT-PCR, and western blotting in the clinical trial. The characterization of dystrophin expression was fundamental in the study for showing the efficacy since no functional outcome tests were performed.


Assuntos
Ensaios Clínicos como Assunto , Éxons/genética , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/genética , Anticorpos Bloqueadores/metabolismo , Sequência de Bases , Biópsia , DNA Complementar/genética , Distrofina/genética , Eletroforese em Microchip , Humanos , Músculos/patologia , Mutação/genética , Isoformas de Proteínas/genética , RNA/isolamento & purificação
12.
J Extracell Vesicles ; 9(1): 1800222, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32944187

RESUMO

Extracellular vesicles (EVs) are naturally occurring nano-sized carriers that are secreted by cells and facilitate cell-to-cell communication by their unique ability to transfer biologically active cargo. Despite the pronounced increase in our understanding of EVs over the last decade, from disease pathophysiology to therapeutic drug delivery, improved molecular tools to track their therapeutic delivery are still needed. Unfortunately, the present catalogue of tools utilised for EV labelling lacks sensitivity or are not sufficiently specific. Here, we have explored the bioluminescent labelling of EVs using different luciferase enzymes tethered to CD63 to achieve a highly sensitive system for in vitro and in vivo tracking of EVs. Using tetraspanin fusions to either NanoLuc or ThermoLuc permits performing highly sensitive in vivo quantification of EVs or real-time imaging, respectively, at low cost and in a semi-high throughput manner. We find that the in vivo distribution pattern of EVs is determined by the route of injection, but that different EV subpopulations display differences in biodistribution patterns. By applying this technology for real-time non-invasive in vivo imaging of EVs, we show that their distribution to different internal organs occurs just minutes after administration.

13.
Adv Drug Deliv Rev ; 159: 332-343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32305351

RESUMO

Over the past decades, a multitude of synthetic drug delivery systems has been developed and introduced to the market. However, applications of such systems are limited due to inefficiency, cytotoxicity and/or immunogenicity. At the same time, the field of natural drug carrier systems has grown rapidly. One of the most prominent examples of such natural carriers are extracellular vesicles (EVs). EVs are cell-derived membranous particles which play important roles in intercellular communication. EVs possess a number of characteristics that qualify them as promising vehicles for drug delivery. In order to take advantage of these attributes, an in-depth understanding of why EVs are such unique carrier systems and how we can exploit their qualities is pivotal. Here, we review unique EV features that are relevant for drug delivery and highlight emerging strategies to make use of those features for drug loading and targeted delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , Humanos
14.
J Extracell Vesicles ; 8(1): 1663043, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579435

RESUMO

Extracellular vesicles (EV) convey biological information by transmitting macromolecules between cells and tissues and are of great promise as pharmaceutical nanocarriers, and as therapeutic per se. Strategies for customizing the EV surface and cargo are being developed to enable their tracking, visualization, loading with pharmaceutical agents and decoration of the surface with tissue targeting ligands. While much progress has been made in the engineering of EVs, an exhaustive comparative analysis of the most commonly exploited EV-associated proteins, as well as a quantification at the molecular level are lacking. Here, we selected 12 EV-related proteins based on MS-proteomics data for comparative quantification of their EV engineering potential. All proteins were expressed with fluorescent protein (FP) tags in EV-producing cells; both parent cells as well as the recovered vesicles were characterized biochemically and biophysically. Using Fluorescence Correlation Spectroscopy (FCS) we quantified the number of FP-tagged molecules per vesicle. We observed different loading efficiencies and specificities for the different proteins into EVs. For the candidates showing the highest loading efficiency in terms of engineering, the molecular levels in the vesicles did not exceed ca 40-60 fluorescent proteins per vesicle upon transient overexpression in the cells. Some of the GFP-tagged EV reporters showed quenched fluorescence and were either non-vesicular, despite co-purification with EVs, or comprised a significant fraction of truncated GFP. The co-expression of each target protein with CD63 was further quantified by widefield and confocal imaging of single vesicles after double transfection of parent cells. In summary, we provide a quantitative comparison for the most commonly used sorting proteins for bioengineering of EVs and introduce a set of biophysical techniques for straightforward quantitative and qualitative characterization of fluorescent EVs to link single vesicle analysis with single molecule quantification.

15.
J Pathol ; 249(3): 271-273, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322741

RESUMO

The progress of antisense-based therapies using first generation Morpholino oligonucleotides for Duchenne muscular dystrophy (DMD) is expected to partially restore dystrophin expression and may prolong the lifespan of DMD patients. In a recent issue of The Journal of Pathology, a sophisticated study by Vila et al used a dystrophic mouse model of DMD to demonstrate that Morpholino-induced exon skipping induced dystrophin expression in skeletal muscle and stimulated cell mediated and humoral responses to dystrophin. The study highlights the need to further investigate the autoimmune response against de novo synthesised truncated dystrophin protein and its long-term consequences after exon-skipping therapy for DMD. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Animais , Autoimunidade , Éxons , Humanos , Camundongos , Camundongos Endogâmicos mdx , Morfolinos , Oligonucleotídeos Antissenso , Reino Unido
16.
Methods Mol Biol ; 1953: 287-299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912029

RESUMO

Extracellular vesicles (EVs) have gained increased attention over the last decade due to their potential as biomarkers and therapeutic entities. However, the characterization and development of EV research has been hampered by the lack of sufficiently effective purification methods. Several concerns have been raised toward the gold standard purification method ultracentrifugation, such as operator-dependent yields, crushing and aggregation of vesicles, poor scalability, and relative lack of purity. Here, we describe, in details, the use of an alternative purification technique: tangential flow filtration with or without subsequent bind-elute size exclusion chromatography that we have previously shown to be reproducible and scalable for purification of EVs.


Assuntos
Fracionamento Celular/métodos , Cromatografia em Gel/métodos , Vesículas Extracelulares/química , Filtração/métodos , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia
17.
Sci Rep ; 8(1): 10813, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018314

RESUMO

Extracellular vesicles (EVs) mediate cell-to-cell communication by delivering or displaying macromolecules to their recipient cells. While certain broad-spectrum EV effects reflect their protein cargo composition, others have been attributed to individual EV-loaded molecules such as specific miRNAs. In this work, we have investigated the contents of vesicular cargo using small RNA sequencing of cells and EVs from HEK293T, RD4, C2C12, Neuro2a and C17.2. The majority of RNA content in EVs (49-96%) corresponded to rRNA-, coding- and tRNA fragments, corroborating with our proteomic analysis of HEK293T and C2C12 EVs which showed an enrichment of ribosome and translation-related proteins. On the other hand, the overall proportion of vesicular small RNA was relatively low and variable (2-39%) and mostly comprised of miRNAs and sequences mapping to piRNA loci. Importantly, this is one of the few studies, which systematically links vesicular RNA and protein cargo of vesicles. Our data is particularly useful for future work in unravelling the biological mechanisms underlying vesicular RNA and protein sorting and serves as an important guide in developing EVs as carriers for RNA therapeutics.


Assuntos
Vesículas Extracelulares/metabolismo , Proteoma/análise , RNA Nuclear Pequeno/metabolismo , Transcriptoma , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Nuclear Pequeno/química , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
18.
Front Immunol ; 9: 1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951064

RESUMO

Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought. For instance, the surface marker profile of EVs is likely dependent on the cell source, the cell's activation status, and multiple other parameters. Within recent years, several new methods and assays to study EV heterogeneity in terms of surface markers have been described; most of them are being based on flow cytometry. Unfortunately, such methods generally require dedicated instrumentation, are time-consuming and demand extensive operator expertise for sample preparation, acquisition, and data analysis. In this study, we have systematically evaluated and explored the use of a multiplex bead-based flow cytometric assay which is compatible with most standard flow cytometers and facilitates a robust semi-quantitative detection of 37 different potential EV surface markers in one sample simultaneously. First, assay variability, sample stability over time, and dynamic range were assessed together with the limitations of this assay in terms of EV input quantity required for detection of differently abundant surface markers. Next, the potential effects of EV origin, sample preparation, and quality of the EV sample on the assay were evaluated. The findings indicate that this multiplex bead-based assay is generally suitable to detect, quantify, and compare EV surface signatures in various sample types, including unprocessed cell culture supernatants, cell culture-derived EVs isolated by different methods, and biological fluids. Furthermore, the use and limitations of this assay to assess heterogeneities in EV surface signatures was explored by combining different sets of detection antibodies in EV samples derived from different cell lines and subsets of rare cells. Taken together, this validated multiplex bead-based flow cytometric assay allows robust, sensitive, and reproducible detection of EV surface marker expression in various sample types in a semi-quantitative way and will be highly valuable for many researchers in the EV field in different experimental contexts.

19.
Sci Rep ; 7(1): 11561, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912498

RESUMO

Extracellular vesicles (EVs) play a pivotal role in cell-to-cell communication and have been shown to take part in several physiological and pathological processes. EVs have traditionally been purified by ultracentrifugation (UC), however UC has limitations, including resulting in, operator-dependant yields, EV aggregation and altered EV morphology, and moreover is time consuming. Here we show that commercially available bind-elute size exclusion chromatography (BE-SEC) columns purify EVs with high yield (recovery ~ 80%) in a time-efficient manner compared to current methodologies. This technique is reproducible and scalable, and surface marker analysis by bead-based flow cytometry revealed highly similar expression signatures compared with UC-purified samples. Furthermore, uptake of eGFP labelled EVs in recipient cells was comparable between BE-SEC and UC samples. Hence, the BE-SEC based EV purification method represents an important methodological advance likely to facilitate robust and reproducible studies of EV biology and therapeutic application.


Assuntos
Fracionamento Químico/métodos , Cromatografia de Afinidade , Cromatografia em Gel , Vesículas Extracelulares , Animais , Linhagem Celular , Cromatografia em Gel/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Camundongos , Proteínas/metabolismo , RNA/metabolismo
20.
Methods Mol Biol ; 1545: 197-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27943216

RESUMO

RNA interference (RNAi) has tremendous potential for specific silencing of disease-causing genes. Its clinical usage however critically depends on the development of carrier systems that can transport the RNAi-mediating small interfering RNA (siRNA) molecules to the cytosol of target cells. Recent reports have suggested that extracellular vesicles (EVs) form a natural transport system through which biomolecules, including RNA, is exchanged between cells. Therefore, EVs are increasingly being considered as potential therapeutic siRNA delivery systems.In this chapter we describe a method for preparing siRNA-loaded EVs, including a robust, scalable method to isolate them from cell culture supernatants.


Assuntos
Fracionamento Celular , Vesículas Extracelulares/metabolismo , RNA Interferente Pequeno/metabolismo , Fracionamento Celular/métodos , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...